已知数列 a n 是等差数列, b n 是等比数列, a 1 = b 1 =2, a 2 = b 2 +1, a 3 = b 3 .
(1)求 a n , b n 的通项公式;
(2) ∀n∈ N * , I∈ 0 , 1 ,有 T n = p 1 a 1 b 1 + p 2 a 2 b 2 + . . . + p n - 1 a n - 1 b n - 1 + p n a n b n | p 1 , p 2 , . . . , p n - 1 , p n ∈ I ,
(i)求证:对任意实数 t∈ T n ,均有 t< a n + 1 b n + 1 ;
(ii)求 T n 所有元素之和.
设全集,,. (1)若,求,(∁); (2)若,求实数的取值范围.
(1)已知tan α=,求的值; (2)化简:.
已知双曲线的左、右两个顶点分别为.曲线是以两点为短轴端点,离心率为的椭圆.设点在第一象限且在曲线上,直线与椭圆相交于另一点. (1)设点的横坐标分别为,证明:; (2)设与(其中为坐标原点)的面积分别为与,且,求的最大值.
已知函数(为常数,无理数是自然对数的底数),曲线在点处的切线方程是. (1)求的值; (2)证明不等式.
已知圆,经过椭圆的右焦点及上顶点,过圆外一点倾斜角为的直线交椭圆于两点. (1)求椭圆的方程; (2)若右焦点在以线段CD为直径的圆的内部,求的取值范围.