甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为 0.6 ,乙每次投篮的命中率均为 0.8 .由抽签确定第 1 次投篮的人选,第 1 次投篮的人是甲、乙的概率各为 0.5 .
(1)求第 2 次投篮的人是乙的概率;
(2)求第 i 次投篮的人是甲的概率;
(3)已知:若随机变量 X i 服从两点分布,且 P X i = 1 =1-P X i = 0 = q i , i=1,2,...,n 则 E ∑ X i i = 1 n = ∑ q i i = 1 n .记前 n 次(即从第 1 次到第 n 次投篮)中甲投篮的次数为 Y ,求 E Y .
(本小题满分14分)2014年8月以“分享青春,共筑未来”为口号的青奥会在江苏南京举行, 为此某商店经销一种青奥会纪念徽章,每枚徽章的成本为30元,并且每卖出一枚徽章需向相关部门上缴元(为常数,),设每枚徽章的售价为元(35).根据市场调查,日销售量与(为自然对数的底数)成反比例.已知当每枚徽章的售价为40元时,日销售量为10枚. (1)求该商店的日利润与每枚徽章的售价的函数关系式; (2)当每枚徽章的售价为多少元时,该商店的日利润最大?并求出的最大值.
(本小题满分14分)在四棱锥中,平面,是边长为4的正三角形,与的交点恰好是中点,又,点在线段上,且. (1)求证:; (2)求证:平面.
(本小题满分14分)如图,在平面上,点,点在单位圆上,() (1)若点,求的值; (2)若,,求.
(本小题满分10分)设且,集合的所有个元素的子集记为. (1)求集合中所有元素之和; (2)记为中最小元素与最大元素之和,求的值.
(选修4-5:不等式选讲) 设正数满足,求的最小值.