甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为 0.6 ,乙每次投篮的命中率均为 0.8 .由抽签确定第 1 次投篮的人选,第 1 次投篮的人是甲、乙的概率各为 0.5 .
(1)求第 2 次投篮的人是乙的概率;
(2)求第 i 次投篮的人是甲的概率;
(3)已知:若随机变量 X i 服从两点分布,且 P X i = 1 =1-P X i = 0 = q i , i=1,2,...,n 则 E ∑ X i i = 1 n = ∑ q i i = 1 n .记前 n 次(即从第 1 次到第 n 次投篮)中甲投篮的次数为 Y ,求 E Y .
已知,,且. (1)求函数的最小正周期及单调增区间; (2)若,求函数的最大值与最小值.
已知向量与的夹角为,,,求的值.
已知函数. (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)若函数在其定义域内为增函数,求正实数的取值范围; (Ⅲ)若,且至少存在一点,使得成立,求实数的取值范围.
已知椭圆的左、右焦点分别为,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)设直线与椭圆交于两点.若原点在以线段为直径的圆内, 求实数的取值范围.
设数列的各项都为正数,其前项和为,已知对任意,是和的等差中项. (Ⅰ)证明数列为等差数列,并求数列的通项公式; (Ⅱ)证明.