设等差数列 a n 的公差为 d ,且 d>1 .令 b n = n2 + n a n ,记 S n , T n 分别为数列 a n , b n 的前 n 项和.
(1)若 3 a 2 =3 a 1 + a 3 , S 3 + T 3 =21 ,求 a n 的通项公式;
(2)若 b n 为等差数列,且 S 99 - T 99 =99 ,求 d .
甲、乙两位学生参加数学竞赛培训。现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下: 甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据,并指出两组数据的中位数。 (2)从平均数、方差考虑,你认为哪位学生更稳定?请说明理由。
(本小题14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。 (I)求椭圆的方程; (Ⅱ)求线段的长度的最小值; (Ⅲ)当线段的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由。
(本小题12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2 表1:
表2:
(1)先确定,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(注意:本题请在答题卡上作图) (2)分别估计类工人和类工人生产能力的众数、中位数和平均数。(精确到0.1)
(本小题12分)下表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费用(万元)的几组对照数据:
(1)若知道对呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (2)已知工厂技改前该型号设备使用10年的维修费用为9万元.试根据(1)求出的线性回归方程,预测该型号设备技改后使用10年的维修费用比技改前降低多少?
(本小题12分)已知,且点A和点B都在椭圆内部, (1)请列出有序数组的所有可能结果; (2)记“使得成立的”为事件A,求事件A发生的概率。