已知f(x)=x3+x(x∈R),(1)判断f(x)在(-∞,+∞)上的单调性,并证明;(2)求证:满足f(x)=a(a为常数)的实数x至多只有一个.
如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D. (Ⅰ)求∠ADF的度数; (Ⅱ)若AB=AC,求的值.
已知,设命题函数在R上单调递减,不等式的解集为R,若和中有且只有一个命题为真命题,求的取值范围.
在半径为的球内作一内接圆柱,这个圆柱的底面半径和高为何值时,它的侧面积最大?并求此最大值.
设集合 (1)若求实数的值; (2)若,.求实数的取值范围.
已知,且求证: