如图,平面⊥平面,为正方形, ,且分别是线段的中点.(Ⅰ)求证://平面; (Ⅱ)求异面直线与所成角的余弦值.
【2015高考北京,理19】已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点. (Ⅰ)求椭圆的方程,并求点的坐标(用,表示); (Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由.
【2015高考新课标1,理20】在直角坐标系中,曲线C:y=与直线(>0)交与M,N两点, (Ⅰ)当k=0时,分别求C在点M和N处的切线方程; (Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
【2015高考陕西,理20】(本小题满分12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率; (Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的 方程.
【2015高考湖北,理21】一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且,.当栓子在滑槽AB内作往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系. (Ⅰ)求曲线C的方程; (Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
【2015高考四川,理20】如图,椭圆E:的离心率是,过点P(0,1)的动直线与椭圆相交于A,B两点,当直线平行与轴时,直线被椭圆E截得的线段长为. (1)求椭圆E的方程; (2)在平面直角坐标系中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.