已知椭圆 C: y2 a2 + x2 b2 =1 a > b > 0 的离心率为 5 3 ,点 A - 2 , 0 在 C 上.
(1)求 C 的方程;
(2)过点 - 2 , 3 的直线交 C 于点 P , Q 两点,直线 AP , AQ 与 y 轴的交点分别为 M , N ,证明:线段 MN 的中点为定点.
如图,在矩形ABCD中,AB=2,AD=1,E为CD的中点,将沿AE折起,使平面平面ABCE,得到几何体.(1)求证:平面;(2)求BD和平面所成的角的正弦值.
甲从装有编号为1,2,3,4,5的卡片的箱子中任意取一张,乙从装有编号为2,4的卡片的箱子中任意取一张,用,分别表示甲.乙取得的卡片上的数字.(1)求概率);(2)记,求的分布列与数学期望.
设函数其中b为常数(1)当时,判断函数在定义域上的单调性(2)若函数有极值点,求b的取值范围,以及的极值点
设函数的定义域、值域均为的反函数为,且对任意的,均有,定义数列(1)求证:(2)设求证(3)是否存在常数A、B同时满足: , 如果存在,求出A、B的值,如果不存在,说明理由。
已知椭圆的右焦点为,右准线与轴交于点,若椭圆的离心率(1)求的值(2)若过的直线与椭圆交于两点,且共线(为坐标原点)求的夹角