已知椭圆 x 2 a 2 + y 2 b 2 =1 a > b > 0 的左焦点为 F ,右顶点为 A , P 为 x=a 上一点,且直线 PF 的斜率为 1 3 , △PFA 的面积为 3 2 ,离心率为 1 2 .
(1)求椭圆的方程;
(2)过点 P 的直线与椭圆有唯一交点 B (异于点 A ),求证: PF 平分 ∠AFB .
(本小题满分12分) 如图,是直角梯形,又,,直线与直线所成的角为. (Ⅰ)求证:平面平面; (Ⅱ)求二面角的大小;
(本小题满分12分) 已知数列{}满足,且点在函数的图象上,其中=1,2,3,…. (Ⅰ)证明:数列{lg(1+)}是等比数列; (Ⅱ)设=(1+)(1+)…(1+),求及数列{}的通项.
(本小题满分12分) 某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望. (Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.
(本小题满分10分) 已知函数的周期为 (Ⅰ)求ω的值和函数的单调递增区间; (Ⅱ)设△ABC的三边、、满足,且边所对的角为,求此时函数的值域.
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为 (1)求A,ω,φ的值.(2)写出函数f(x)图象的对称中心及单调递增区间. (3)当x∈时,求f(x)的值域.