(本题12分)如图,已知AD为⊙O的直径,直线BA与⊙O相切于点A,直线OB与弦AC垂直并相交于点G.
求证:BA·DC=GC·AD.
.某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数与时间x(小时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合污染指数,并记作.
(1)令,求t的取值范围;(2)求函数;
(3)市政府规定,每天的综合污染指数不得超过2,试问目前市中心的综合污染是否超标?请说明理由。
(本小题满分12分)已知二次函数满足:,,且该函数的最小值为2.
⑴ 求此二次函数的解析式;
⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.
(本小题满分13分)有一批单放机原价为每台80元,两个商场均有销售,为了吸引顾客,两商场纷纷推出优惠政策。甲商场的优惠办法是:买一台减4元,买两台每台减8元,买三台每台减12元,......,依此类推,直到减到半价为止;乙商场的优惠办法是:一律7折。某单位欲为每位员工买一台单放机,问选择哪个商场购买比较划算?
(14分)设是椭圆的两点,,,且,椭圆离心率,短轴长为2,O为坐标原点。
(1) 求椭圆方程;
(2) 若存在斜率为的直线AB过椭圆的焦点(为半焦距),求的值;
(3) 试问的面积是否为定值?若是,求出该定值;若不是,说明理由。