(本小题满分12分)已知二次函数满足:,,且该函数的最小值为2.⑴ 求此二次函数的解析式;⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.
在长方体中,分别是的中点,,. (Ⅰ)求证://平面; (Ⅱ)在线段上是否存在点,使直线与垂直, 如果存在,求线段的长,如果不存在,请说明理由.
已知顶点在原点,焦点在轴上的抛物线过点. (1)求抛物线的标准方程; (2)过点作直线交抛物线于两点,使得恰好平分线段,求直线的方程
(本小题满分16分) 已知(,为此函数的定义域)同时满足下列两个条件:①函数 在内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称,为闭函数。请解答以下问题: (1)判断函数是否为闭函数?并说明理由; (2)求证:函数()为闭函数; (3)若是闭函数,求实数的取值范围.
(本小题满分14分) 已知: (1)用定义法证明函数是上的增函数; (2)是否存在实数使函数为奇函数?若存在,请求出的值,若不存在,说明理由.
(本小题满分14分) 已知二次函数的最小值为1,且. (1)求的解析式; (2)若在区间上不单调,求实数的取值范围; (3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.