已知O(0,0)、A(,0)为平面内两定点,动点P满足|PO|+|PA|=2.(I)求动点P的轨迹方程;(II)设直线与(I)中点P的轨迹交于B、C两点.求△ABC的最大面积及此时直线l的方程。
如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.
已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣9≤0},m∈R.(1)若m=3,求A∩B;(2)若A⊆B,求实数m的取值范围.
选修4-5:不等式选讲设函数.(Ⅰ)解不等式;(Ⅱ)若对一切实数均成立,求实数的取值范围.
选修4—4:坐标系与参数方程平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(Ⅰ)求直线的极坐标方程;(Ⅱ)若直线与曲线相交于、两点,求.
选修4-1:几何证明选讲如图所示,为的直径,为的中点,为的中点.(Ⅰ)求证:;(Ⅱ)求证:.