高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

[选修4-5:不等式选讲]

已知函数 f x = x 2 + ax + 4 g ( x ) = │x + 1 + │x– 1 .

(1)当 a = 1 时,求不等式 f x g x 的解集;

(2)若不等式 f x g x 的解集包含 [ 1 1 ] ,求 a的取值范围.

来源:2017年全国统一高考理科数学试卷(新课标Ⅰ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:较难

[选修4―4:坐标系与参数方程]

在直角坐标系 xOy 中,曲线 C的参数方程为 x = 3 cos θ , y = sin θ , θ 为参数 ,直线 l的参数方程为 x = a + 4 t , y = 1 - t , t 为参数 .

(1)若 a = - 1 ,求 Cl的交点坐标;

(2)若 C上的点到 l的距离的最大值为 17 ,求a.

来源:2017年全国统一高考理科数学试卷(新课标Ⅰ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:中等

已知函数 f x ) = a e 2 x + ( a 2 ) e x x .

(1)讨论 f ( x ) 的单调性;

(2)若 f ( x ) 有两个零点,求a的取值范围.

来源:2017年全国统一高考理科数学试卷(新课标Ⅰ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:较难

已知椭圆C x 2 a 2 + y 2 b 2 = 1 a > b > 0 ,四点P1(1,1),P2(0,1),P3 1 3 2 P4 1 3 2 中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

来源:2017年全国统一高考理科数学试卷(新课标Ⅰ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:中等

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布 N ( μ , σ 2 )

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在 ( μ - 3 σ , μ + 3 σ ) 之外的零件数,求 P ( X 1 ) X 的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在 ( μ - 3 σ , μ + 3 σ ) 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

)试说明上述监控生产过程方法的合理性;

)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得 x ̄ = 1 16 i = 1 16 x i = 9 . 97 s = 1 16 i = 1 16 ( x i - x ̄ ) 2 = 1 16 ( i = 1 16 x i 2 - 16 x ̄ 2 ) 2 0 . 212 ,其中 x i 为抽取的第 i 个零件的尺寸, i = 1 , 2 , , 16

用样本平均数 x ̄ 作为 μ 的估计值 μ ̂ ,用样本标准差 s 作为 σ 的估计值 σ ̂ ,利用估计值判断是否需对当天的生产过程进行检查?剔除 ( μ ̂ - 3 σ ̂ , μ ̂ + 3 σ ̂ ) 之外的数据,用剩下的数据估计 μ σ (精确到0.01).

附:若随机变量 Z 服从正态分布 N ( μ , σ 2 ) ,则 P ( μ - 3 σ < Z < μ + 3 σ ) = 0 . 997 4

0 . 997 4 16 = 0 . 959 2 0 . 008 0 . 09

来源:2017年全国统一高考理科数学试卷(新课标Ⅰ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:中等

如图,在四棱锥 P - ABCD 中, AB / / CD ,且 BAP = CDP = 9 0 .

image.png

(1)证明:平面 PAB 平面 PAD

(2)若 PA = PD = AB = DC APD = 9 0 ,求二面角 A - PB - C 的余弦值.

来源:2017年全国统一高考理科数学试卷(新课标Ⅰ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:中等

ABC的内角ABC的对边分别为abc,已知 ABC 的面积为 a 2 3 sin A    

(1)求 sinBsinC ;

(2)若 6 cosBcosC = 1 a = 3 ,求 ABC 的周长.

来源:2017年全国统一高考理科数学试卷(新课标Ⅰ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:中等

[选修4-5:不等式选讲]

已知函数 f x = | 2 x a | + a

(1)当 a = 2 时,求不等式 f x 6 的解集;

(2)设函数 g x = | 2 x 1 | ,当 x R 时, f x + g x 3 ,求a的取值范围.

来源:2016年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:较难

[选修4-4:坐标系与参数方程]

在直角坐标系 xOy 中,曲线 C 1 的参数方程为 x = 3 cos α y = sin α α 为参数 ,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin θ + π 4 = 2 2

(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;

(2)设点P在 C 1 上,点Q在 C 2 上,求 | PQ | 的最小值及此时P的直角坐标.

来源:2016年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:较难

[选修4-1:几何证明选讲]如图,⊙O中 AB ̂ 的中点为P,弦PC,PD分别交AB于E,F两点.

image.png

(1)若 PFB = 2 PCD ,求 PCD 的大小;

(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明: OG CD

来源:2016年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 更新:2022-08-02
  • 题型:解答题
  • 难度:中等

设函数 f x = lnx x + 1

(1)讨论 f x 的单调性;

(2)证明当x∈(1,+∞)时,1< x - 1 ln x <x;

(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>cx

来源:2016年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:中等

已知抛物线 C y 2 = 2 x 的焦点为F,平行于x轴的两条直线 l 1 l 2 分别交C于A,B两点,交C的准线于P,Q两点.

(1)若F在线段AB上,R是PQ的中点,证明 AR FQ

(2)若 PQF 的面积是 ABF 的面积的两倍,求AB中点的轨迹方程.

来源:2016年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:中等

如图,四棱锥 P ABCD 中, P A 底面 ABCD  , AD BC AB = AD = AC = 3 PA = BC = 4 ,M为线段AD上一点, AM = 2 MD ,N为PC的中点.

image.png

(1)证明 MN 平面 P A B

(2)求四面体 N BCM 的体积.

来源:2016年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 更新:2022-08-02
  • 题型:解答题
  • 难度:中等

如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

image.png

(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;

(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据: i = 1 7 y i = 9 . 32 i = 1 7 t i y i = 40 . 17 i = 1 7 y i - y - 2 = 0 . 55 7 2 . 646

参考公式: r = i = 1 7 t i - t - y i - y - i = 1 7 t i - t - 2 i = 1 7 y i - y - 2 ,回归方程 y = a + b t 中斜率和截距的最小二乘估计公式分别为:

b = i = 1 n t i - t - y i - y - i = 1 n t i - t - 2 a = y - - b t -

来源:2016年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 更新:2022-08-02
  • 题型:解答题
  • 难度:中等

已知各项都为正数的数列 { a n } 满足 a 1 = 1 a n 2 ﹣( 2 a n + 1 1 a n 2 a n + 1 = 0

(1)求 a 2    a 3

(2)求 { a n } 的通项公式.

来源:2016年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 更新:2021-09-27
  • 题型:解答题
  • 难度:中等

高中数学解答题