[选修4-4:坐标系与参数方程]
在直角坐标系 xOy 中,曲线 C 1 的参数方程为 x = 3 cos α y = sin α ( α 为参数 ) ,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin ( θ + π 4 ) = 2 2 .
(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;
(2)设点P在 C 1 上,点Q在 C 2 上,求 | PQ | 的最小值及此时P的直角坐标.
如图a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿线EF把四边形CDFE折起如图b,使平面CDFE⊥平面ABEF. (1)求证:AB⊥平面BCE; (2)求三棱锥C ADE体积.
如图,在三棱锥S ABC中,平面EFGH分别与BC,CA,AS,SB交于点E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG. 求证:(1)AB∥平面EFGH; (2)GH∥EF; (3)GH⊥平面SAC.
在三棱柱ABC A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=. (1)求证:平面A1BC⊥平面ACC1A1; (2)如果D为AB的中点,求证:BC1∥平面A1CD.
已知直线l1:4x-3y+6=0和直线l2:x=-(p>2).若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2. (1)求抛物线C的方程; (2)若拋物线上任意一点M处的切线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标;若不存在,请说明理由.
已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*,p与q垂直,且a1=1. (1)求数列{an}的通项公式; (2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.