如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。.(1)求证:DM∥平面PAC;(2)求证:平面PAC⊥平面ABC;(3)求三棱锥M-BCD的体积
公差不为0的等差数列中,且成等比数列. (I)求的通项公式; (Ⅱ)设试比较与的大小,并说明理由.
已知函数的周期 (Ⅰ)若直线与函数的图象在是两个公共点,其横坐标分别为求的值; (Ⅱ)已知三角形的内角的对边分别为且若向量共线,求的值.
已知函数(),且函数图象过原点. (Ⅰ)求函数的单调区间; (Ⅱ)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由; (Ⅲ)若,当时,不等式恒成立,求a的取值范围.
如图,已知椭圆Γ:+=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的一个动点,满足||=2a.点P是线段F1Q与该椭圆的交点,点M在线段F2Q上,且满足·=0,||≠0. (Ⅰ)求点M的轨迹C的方程; (Ⅱ)设不过原点O的直线l与轨迹C交于A,B两点,若直线OA,AB,OB的斜率依次成等比数列,求△OAB面积的取值范围; (Ⅲ)由(Ⅱ)求解的结果,试对椭圆Γ写出类似的命题.(只需写出类似的命题,不必说明理由)
如图,三棱柱中,平面,,, 点在线段上,且,. (Ⅰ)求证:直线与平面不平行; (Ⅱ)设平面与平面所成的锐二面角为,若,求的长; (Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.