(本小题满分14分)设椭圆C:的左、右焦点分别为F1、F2,A是椭圆C上的一点,,坐标原点O到直线AF1的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设Q是椭圆C上的一点,过点Q的直线l 交 x轴于点,交 y轴于点M,若,求直线l 的斜率.
.已知函数. (Ⅰ)求证: 对于任意的()都有恒成立 (Ⅱ)若锐角满足,求. (Ⅲ)若对于任意的恒成立,求的取值范围.
.已知函数在一个周期内的部分函数图象如图所示. (Ⅰ)求函数的解析式. (Ⅱ)求函数的单调递增区间. (Ⅲ)求函数在区间上的最大值和最小值.
若函数. (Ⅰ)求函数的定义域,判断函数的奇偶性. (Ⅱ)若关于()的方程,求.
甲盒中有1个黑球1个白球;乙盒中有1个黑球2个红球.这些球除了颜色不同外其余无差别. (Ⅰ)从两个盒子中各取1个球,求取出的两个球颜色不同的概率. (Ⅱ)若把两盒中所有的球混合后放入丙盒中.从丙盒中一次取出两个球,求取出的两个球颜色不同的概率.
(本题12分) 如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,BC∥AD,AB⊥AD,AD=2AB=2BC="2," O为AD中点. (1)求证:PO⊥平面ABCD; (2)求直线PB与平面PAD所成角的正弦值; (3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。