(本小题满分12分)一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)得多少分的可能性最大?(3)所得分数的数学期望(用分数表示,精确到0.01).
(本小题满分14分)已知函数(x∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a的值所组成的集合A; (Ⅱ)设关于x的方程的两实数根为x1、x2,试问:是否存在实数m,使得不等式对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由?
(本小题满分14分)已知两点M(-1,0), N(1, 0), 且点P使成公差小于零的等差数列. (Ⅰ)求点P的轨迹方程; (Ⅱ)若点P的坐标为(x0, y0), 记θ为,的夹角, 求
(本小题满分13分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇. (I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
(本小题满分13分)若=,=,其中>0,记函数f(x)=(+)·+k. (1)若f(x)图象中相邻两条对称轴间的距离不小于,求的取值范围. (2)若f(x)的最小正周期为,且当x时,f(x)的最大值是,求f(x)的解析式,
(本小题满分13分)已知实数有极大值32. (1)求函数的单调区间;(2)求实数的值.