(《坐标系与参数方程选讲》选做题).已知直线的极坐标方程为,则点到这条直线的距离为 ▲ .
某市为了了解今年高中毕业生的体能情况,从本市某高中毕业班中抽取了一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格,把所得数据进行整理后,分成六组画出频率分布直方图的一部分,如图,已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第六小组的频数是7. (1)求这次铅球测试成绩合格的人数; (2)若从第一小组和第二小组中随机抽取两个人的测试成绩,则两个人的测试成绩来自同一小组的概率是多少?
设函数,. (1)若,求的最大值及相应的集合; (2)若是的一个零点,且,求的值和的最小正周期.
已知函数 (1)解不等式; (2)若不等式的解集为空集,求实数的取值范围.
平面直角坐标系中,已知曲线,将曲线上所有点横坐标,纵坐标分别伸长为原来的倍和倍后,得到曲线 (1)试写出曲线的参数方程; (2)在曲线上求点,使得点到直线的距离最大,并求距离最大值.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点. (1)求证:△≌△; (2)若,求长.