[选修4―4:坐标系与参数方程]
在直角坐标系 xOy 中,曲线 C的参数方程为 x = 3 cos θ , y = sin θ , ( θ 为参数 ) ,直线 l的参数方程为 x = a + 4 t , y = 1 - t , t 为参数 .
(1)若 a = - 1 ,求 C与 l的交点坐标;
(2)若 C上的点到 l的距离的最大值为 17 ,求a.
高校招生是根据考生所填报的志愿,从考试成绩所达到的最高第一志愿开始,按顺序分批录取,若前一志愿不能录取,则依次给下一个志愿(同批或下一批)录取.某考生填报了三批共6个不同志愿(每批2个),并对各志愿的单独录取以及能考上各批分数线的概率进行预测,结果如“表一”所示(表中的数据为相应的概率,a、b分别为第一、第二志愿).(Ⅰ)求该考生能被第2批b志愿录取的概率;(Ⅱ)求该考生能被录取的概率;(Ⅲ)如果已知该考生高考成绩已达到第2批分数线却未能达到第1批分数线,请计算其最有可能在哪个志愿被录取?(以上结果均保留二个有效数字)
在一个盒子中,放有标号分别为,,的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为、,记.(Ⅰ)求随机变量的最大值,并求事件“取得最大值”的概率;(Ⅱ)求随机变量的分布列和数学期望.
两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是,(Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?(Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?(Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次?
设关于x的一元二次方程x2+2ax+b2=0.(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
下表是某地区的一种传染病与饮用水的调查表:
利用列联表的独立性检验,判断能否以99.9%的把握认为“该地区的传染病与饮用不干净的水有关”参考数据: