如图,四棱锥 P ﹣ ABCD 中, P A ⊥ 底面 ABCD , AD ∥ BC , AB = AD = AC = 3 , PA = BC = 4 ,M为线段AD上一点, AM = 2 MD ,N为PC的中点.
(1)证明 MN ∥ 平面 P A B ;
(2)求四面体 N ﹣ BCM 的体积.
直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点. (Ⅰ)求的取值范围; (Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点. 求证:; (Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.
设是满足不等式的自然数的个数,其中. (Ⅰ)求的值; (Ⅱ) 求的解析式; (Ⅲ)记,令,试比较与的大小.
如图,已知正三棱柱—的底面边长是,是侧棱的中点,直线与侧面所成的角为. (Ⅰ)求此正三棱柱的侧棱长; (Ⅱ)求二面角的大小; (Ⅲ)求点到平面的距离.
已知:函数(是常数)是奇函数,且满足, (Ⅰ)求的值; (Ⅱ)试判断函数在区间上的单调性并说明理由; (Ⅲ)试求函数在区间上的最小值.
一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为q,若第k次出现“○”,则记;出现“×”,则记,令 (I)当时,记,求的分布列及数学期望; (II)当时,求的概率.