设函数. (1)若在和处有不同的极值,且极大值为4,极小值为1,求及实数的值;(2) 若在上单调递增且,求的最大值.
函数()的最大值为3, 其图像相邻两条对称轴之间的距离为,(1)求函数的解析式;(2)设,则,求的值.
(本小题满分14分)已知,函数.(1)求的单调区间;(2)当时,证明:方程在区间(2,)上有唯一解;(3)若存在均属于区间的且,使=,证明:.
(本小题满分14分)已知等差数列的公差为,前项和为,且,,成等比数列.(1)求数列的通项公式;(2)令,求数列的前项和.
(本小题满分13分)已知椭圆:的焦距为,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆的标准方程;(2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点,,证明:平分线段(其中为坐标原点),
(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点,分别为棱,的中点.(1)证明平面;(2)求与平面所成角的正弦值;(3)求二面角的余弦值.