设函数f(x)=+,g(x)=ln(2ex)(其中e为自然对数的底数)(1)求y=f(x)-g(x)(x>0)的最小值;(2)是否存在一次函数h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)对一切x>0恒成立;若存在,求出一次函数的表达式,若不存在,说明理由:3)数列{}中,a1=1,=g()(n≥2),求证:<<<1且<.
已知等差数列的首项,公差,且第2项、第5项、第14项分别是等比数列的第2项、第3项、第4项。 ①求数列与的通项公式; ②设数列对均有成立,求+
在中,角A,B,C的对边分别为,a,b,c,已知向量,且满足. ①求角A的大小; ②若,试判断的形状。
已知函数的图像经过点,,且当时,取得最大值。 ①求的解析式; ②求函数的单调区间。
已知直线的参数方程:为参数和圆的极坐标方程: (1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程; (2)判断直线和圆的位置关系.
已知椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率. (Ⅰ)求椭圆的方程; (Ⅱ)求的角平分线所在直线的方程; (Ⅲ)在椭圆上是否存在关于直线对称的相异两点? 若存在,请找出;若不存在,说明理由.