已知椭圆C: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) ,四点P1(1,1),P2(0,1),P3 ( – 1 , 3 2 ) ,P4 ( 1 , 3 2 ) 中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
在△ABC中,三个内角A、B、C的对应边为,. (Ⅰ)当 (Ⅱ)设,求的最大值.
设函数. (Ⅰ)求函数单调递增区间; (Ⅱ)当时,求函数的最大值和最小值.
已知数列的前项和为,且满足; (Ⅰ)求数列的通项公式; (Ⅱ)若,且的前n项和为,求使得对都成立的所有正整数k的值.
如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点. (Ⅰ)求证:PB⊥DM; (Ⅱ)求点B到平面PAC的距离.
对某校高一年级学生参加社区服务次数进行统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数,根据数据作出了频数的统计如下:
(Ⅰ)求出表中M,r,m,n的值; (Ⅱ)在所取样本中,从参加社区服务次数不少于20次的学生中任选2人,求至少有1人参加社区服务次数在区间[25,30)内的概率.