(本小题满分10分)已知的面积是30,内角、、所对边长分别为、、,.(1)求;(2)若,求的值.
已知直线被抛物线截得的 弦长为20,为坐标原点. (1)求实数的值; (2)问点位于抛物线弧上何处时,△面积最大?
已知将圆上的每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C;设,平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点. (1)求曲线的方程; (2)求m的取值范围.
在抛物线上求一点,使该点到直线的距离为最短,求该点的坐标
椭圆上有一点M(-4,)在抛物线(p>0)的准线l上,抛物线的焦点也是椭圆焦点. (1)求椭圆方程; (2)若点N在抛物线上,过N作准线l的垂线,垂足为Q距离,求|MN|+|NQ|的最小值.
设抛物线()的焦点为F,经过点 F的直线交抛物线于A、B两点.点C在抛物线的准线上,且BC∥X轴.证明直线AC经过原点O.