已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径.
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
设等差数列的前项和为,数列的前项和为满足 (Ⅰ)求数列的通项公式及数列的前项和; (Ⅱ)是否存在非零实数,使得数列为等比数列?并说明理由
如图,直三棱柱中,D是的中点. (1)证明:平面; (2)设,求异面直线与所成角的大小.
已知函数. (1)求函数的周期及单调递增区间; (2)在中,三内角A,B,C的对边分别为,已知函数的图象经过点,若,求a的值.
已知圆C经过点,和直线相切,且圆心在直线上. (1)求圆C的方程; (2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.
已知. (Ⅰ)关于的不等式恒成立,求实数的取值范围; (Ⅱ)设,且,求证:.