高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为 0.6 ,乙每次投篮的命中率均为 0.8 .由抽签确定第 1 次投篮的人选,第 1 次投篮的人是甲、乙的概率各为 0.5

(1)求第 2 次投篮的人是乙的概率;

(2)求第 i 次投篮的人是甲的概率;

(3)已知:若随机变量 X i 服从两点分布,且 P X i = 1 =1-P X i = 0 = q i i=1,2,...,n E X i i = 1 n = q i i = 1 n .记前 n 次(即从第 1 次到第 n 次投篮)中甲投篮的次数为 Y ,求 E Y

来源:2023年全国统一高考数学试卷(新高考Ⅰ卷)
  • 更新:2024-03-22
  • 题型:解答题
  • 难度:中等

设等差数列 a n 的公差为 d ,且 d>1 .令 b n = n2 + n a n ,记 S n T n 分别为数列 a n b n 的前 n 项和.

(1)若 3 a 2 =3 a 1 + a 3 S 3 + T 3 =21 ,求 a n 的通项公式;

(2)若 b n 为等差数列,且 S 99 - T 99 =99 ,求 d

来源:2023年全国统一高考数学试卷(新高考Ⅰ卷)
  • 更新:2024-03-21
  • 题型:解答题
  • 难度:中等

已知函数 f x =a ex + a -x

(1)讨论 f x 的单调性;

(2)证明:当 a>0 时, f x >2lna+ 3 2

来源:2023年全国统一高考数学试卷(新高考Ⅰ卷)
  • 更新:2024-03-21
  • 题型:解答题
  • 难度:中等

如图,在正四棱柱 ABCD- A 1 B 1 C 1 D 1 中, AB=2 A A 1 =4 .点 A 2 B 2 C 2 D 2 分别在棱 A A 1 B B 1 C C 1 D D 1 上, A A 2 =1 B B 2 =D D 2 =2 C C 2 =3

(1)证明: B 2 C 2 A 2 D 2

(2)点 P 在棱 B B 1 上,当二面角 P- A 2 C 2 - D 2 150° 时,求 B 2 P

来源:2023年全国统一高考数学试卷(新高考Ⅰ卷)
  • 更新:2024-03-21
  • 题型:解答题
  • 难度:中等

已知在 ABC 中, A+B=3C 2sin A - C =sinB

(1)求 sinA

(2)设 AB=5 ,求 AB 边上的高.

来源:2023年全国统一高考数学试卷(新高考Ⅰ卷)
  • 更新:2024-03-21
  • 题型:解答题
  • 难度:中等

[选修4-5:不等式选讲]

已知 f x =2 x + x - 2

(1)求不等式 f x 6-x 的解集;

(2)在直角坐标系 xOy 中,求不等式组 f x y x + y - 6 0 所确定的平面区域的面积.

来源:2023年全国统一高考理科数学试卷(全国乙卷)
  • 更新:2024-01-20
  • 题型:解答题
  • 难度:中等

[选修4-4:坐标系与参数方程]

在直角坐标系 xOy 中,以坐标原点 O 为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为 ρ=2sinθ π 4 θ π 2 ,曲线 C 2 : x = 2 cos α y = 2 sin α α 为参数, π 2 <α<π ).

(1)写出 C 1 的直角坐标方程;

(2)若直线 y=x+m 既与 C 1 没有公共点,也与 C 2 没有公共点、求 m 的取值范围.

来源:2023年全国统一高考理科数学试卷(全国乙卷)
  • 更新:2024-01-20
  • 题型:解答题
  • 难度:中等

已知椭圆 C: y2 a2 + x2 b2 =1 a > b > 0 的离心率为 5 3 ,点 A - 2 , 0 C 上.

(1)求 C 的方程;

(2)过点 - 2 , 3 的直线交 C 于点 P Q 两点,直线 AP AQ y 轴的交点分别为 M N ,证明:线段 MN 的中点为定点.

来源:2023年全国统一高考理科数学试卷(全国乙卷)
  • 更新:2024-01-19
  • 题型:解答题
  • 难度:中等

如图,在三棱锥 P-ABC 中, ABBC AB=2 BC=2 2 PB=PC= 6 AD= 5 DO BP AP BC 的中点分别为 D E O ,点 F AC 上, BFAO

(1)证明: EF 平面 ADO

(2)证明:平面 ADO 平面 BEF

(3)求二面角 D-AO-C 的正弦值.

来源:2023年全国统一高考理科数学试卷(全国乙卷)
  • 更新:2024-01-19
  • 题型:解答题
  • 难度:中等

ABC 中,已知 BAC=120° AB=2 AC=1

(1)求 sinABC

(2)若 D BC 上一点.且 BAD=90° ,求 ADC 的面积.

来源:2023年全国统一高考理科数学试卷(全国乙卷)
  • 更新:2024-01-19
  • 题型:解答题
  • 难度:中等

某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行 10 次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为 x i y i i = 1 , 2 , . . . 10 .试验结果如下:

试验序号 i

1

2

3

4

5

6

7

8

9

10

伸缩率 x i

545

533

551

522

575

544

541

568

596

548

伸缩率 y i

536

527

543

530

560

533

522

550

576

536

z i = x i - y i i = 1 , 2 , . . . 10 ,记 z 1 , z 2 ,... z 10 的样本平均数为 z ¯ ,样本方差为 s2

(1)求 z ¯ s2

(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果 z ¯ 2 s2 10 ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)

来源:2023年全国统一高考理科数学试卷(全国乙卷)
  • 更新:2024-01-19
  • 题型:解答题
  • 难度:中等

[选修4-5:不等式选讲]

已知 f x =2 x + x - 2

(1)求不等式 f x 6-x 的解集;

(2)在直角坐标系 xOy 中,求不等式组 f x y x + y - 6 0 所确定的平面区域的面积.

来源:2023年全国统一高考文科数学试卷(全国乙卷)
  • 更新:2024-01-17
  • 题型:解答题
  • 难度:中等

[选修4-4:坐标系与参数方程]

在直角坐标系 xOy 中,以坐标原点 O 为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为 ρ=2sinθ π 4 θ π 2 ,曲线 C 2 : x = 2 cos α y = 2 sin α α 为参数, π 2 <α<π ).

(1)写出 C 1 的直角坐标方程;

(2)若直线 y=x+m 既与 C 1 没有公共点,也与 C 2 没有公共点、求 m 的取值范围.

来源:2023年全国统一高考文科数学试卷(全国乙卷)
  • 更新:2024-01-17
  • 题型:解答题
  • 难度:中等

已知椭圆 C: y2 a2 + x2 b2 =1 a > b > 0 的离心率为 5 3 ,点 A - 2 , 0 C 上.

(1)求 C 的方程;

(2)过点 - 2 , 3 的直线交 C 于点 P Q 两点,直线 AP AQ y 轴的交点分别为 M N ,证明:线段 MN 的中点为定点.

来源:2023年全国统一高考文科数学试卷(全国乙卷)
  • 更新:2024-01-17
  • 题型:解答题
  • 难度:中等

如图,在三棱锥 P-ABC 中, ABBC AB=2 BC=2 2 PB=PC= 6 BP AP BC 的中点分别为 D E O ,点 F AC 上, BFAO

(1)求证: EF 平面 ADO

(2)若 POF=120° ,求三棱锥 P-ABC 的体积.

来源:2023年全国统一高考文科数学试卷(全国乙卷)
  • 更新:2024-01-17
  • 题型:解答题
  • 难度:中等

高中数学解答题