如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据: ∑ i = 1 7 y i = 9 . 32 , ∑ i = 1 7 t i y i = 40 . 17 , ∑ i = 1 7 y i - y - 2 = 0 . 55 , 7 ≈ 2 . 646 .
参考公式: r = ∑ i = 1 7 t i - t - y i - y - ∑ i = 1 7 t i - t - 2 ∑ i = 1 7 y i - y - 2 ,回归方程 y ∧ = a ∧ + b ∧ t 中斜率和截距的最小二乘估计公式分别为:
b ∧ = ∑ i = 1 n t i - t - y i - y - ∑ i = 1 n t i - t - 2 , a ∧ = y - - b ∧ t - .
(本小题满分12分)已知向量,,若,求的值.
(本小题满分12分)已知函数的最小正周期为,其图象的一条对称轴是直线. (Ⅰ)求,; (Ⅱ)求函数的单调递减区间; (Ⅲ)画出函数在区间上的图象.
(本小题满分12分)已知的面积是30,内角所对边长分别为,. (Ⅰ)求; (Ⅱ)若,求的值.
已知函数 (1)判断的单调性并证明; (2)若满足,试确定的取值范围。 (3)若函数对任意时,恒成立,求的取值范围。
设函数满足:对任意都有,且 (1)求的值;(2)求的值;(3)判断函数是否具有奇偶性,并证明你的结论。