(本小题满分12分)已知函数,.(Ⅰ)若,且存在单调递减区间,求的取值范围;(Ⅱ)设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交、于点、,是否存在点,使在点处的切线与在点处的切线平行?如果存在,求出点的横坐标,如果不存在,说明理由.
已知定义在区间[-,]上的函数y=f(x)图像关于直线x=对称,当x≥时,f(x)=-sinx. (1)作出y=f(x)的图像; (2)求y=f(x)的解析式.
已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n. (1)设bn=an-1,求证:数列{bn}是等比数列; (2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
已知函数f(x)=ax3-3x2+1-(a∈R且a≠0),试求函数f(x)的极大值与极小值.
设命题p:函数是R上的减函数,命题q:函数f(x)=x2-4x+3在上的值域为[-1,3],若“p且q”为假命题,“p或q”为真命题,求的取值范围.
选修4—5:不等式选讲 已知函数 (1)若不等式的解集为,求实数a,m的值。 (2)当a =2时,解关于x的不等式