已知定理:“若为常数,满足,则函数的图象关于点中心对称”.设函数,定义域为A.(1)试证明的图象关于点成中心对称;(2)当时,求证:;(3)对于给定的,设计构造过程:,…,.如果,构造过程将继续下去;如果,构造过程将停止.若对任意,构造过程可以无限进行下去,求a的值.
设项数均为()的数列、、前项的和分别为、、.已知,且集合=. (1)已知,求数列的通项公式; (2)若,求和的值,并写出两对符合题意的数列、; (3)对于固定的,求证:符合条件的数列对(,)有偶数对.
已知实数,函数. (1)当时,求的最小值; (2)当时,判断的单调性,并说明理由; (3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.
噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明, 声音强度(分贝)由公式(为非零常数)给出,其中为声音能量. (1)当声音强度满足时,求对应的声音能量满足的等量关系式; (2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.
如图,四棱锥的底面是正方形,⊥平面, (1)求证:; (2)求二面角的大小.
已知a∈R,设关于x的不等式|2x﹣a|+|x+3|≥2x+4的解集为A. (1)若a=1,求A; (2)若A=R,求a的取值范围.