上海理)如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;(3)求证:圆内的点都不是“C1—C2型点”.
在抽样方法中,有放回抽样与无放回抽样中个体被抽到的概率是不同的,但当总体的容量很大而抽取的样本容量很小时,无放回抽样可以近似看作有放回抽样。现有一大批产品,采用随机抽样的方法一件一件抽取进行检验。若抽查的4件产品中未发现不合格产品,则停止检查,并认为该批产品合格;若在查到第4件或在此之前发现不合格产品,则也停止检查,并认为该批产品不合格。假定该批产品的不合格率为0.1,设检查产品的件数为X。(Ⅰ)求随机变量X的分布列和数学期望;(Ⅱ)通过上述随机抽样的方法进行质量检查,求认为该批产品不合格的概率
正的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点(如图(1)).现将沿CD翻折成直二面角A-DC-B(如图(2)).在图形(2)中:(Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由;(Ⅱ)求二面角E-DF-C的余弦值;(Ⅲ)在线段BC上是否存在一点P,使?证明你的结论.
如图,港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A还有多远?
已知函数()均在函数的图象上。(Ⅰ)求数列的通项公式;(Ⅱ)令证明:
(本小题满分14分)已知函数,(1)求函数的单调区间,并判断是否有极值;(2)若对任意的,恒有成立,求的取值范围;(3)证明:().