已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足.(1)求实数的值;(2)证明:直线与直线的斜率之积是定值;(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.
,定义,其中n∈N*.(Ⅰ)求的值,并求证:数列{an}是等比数列;(II)若,其中n∈N*,试比较9与大小,并说明理由.
)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.(I)证明:EM⊥BF; (II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
在⊿ABC中,a,b,c分别为内角A,B,C所对的边,A<B<C,A,B,C成等差数列,公差为,且也成等差数列.(I)求;(II)若,求⊿ABC的面积。
已知,不等式的解集为M .(I)求M;(II)当时,证明:.
已知点P在曲线:(为参数,)上,点Q在曲线:上(1)求曲线的普通方程和曲线的直角坐标方程;(2)求点P与点Q之间距离的最小值.