已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足.(1)求实数的值;(2)证明:直线与直线的斜率之积是定值;(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.
已知函数,设函数在区间上的最大值为. (1)若,试求出; (2)若对任意的,恒成立,试求出的最大值.
已知椭圆经过点,对称轴为坐标轴,焦点,在轴上,离心率. (1)求椭圆的方程; (2)求的角平分线所在直线的方程; (3)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若存在,说明理由.
如图,在四棱锥中,底面为菱形,,为的中点. (1)若,求证:平面平面; (2)设点是线段上的一点,,且平面. (1)求实数的值; (2)若,且平面平面,求二面角的大小.
数列满足:,(). (1)证明:数列是等比数列; (2)求数列的通项公式; (3)设,数列的前项和为,求证:.
在中,角,,的对边分别为,,,已知. (1)求; (2)若,求的取值范围.