已知函数,其中为大于零的常数.(Ⅰ)当a=1时,求函数的单调区间,(Ⅱ)求函数在区间[1,2]上的最小值;(Ⅲ)求证:对于任意的n>1时,都有>成立.
如图,在四棱锥中,底面是直角梯形,∥,,⊥平面SAD,点是的中点,且,. (1)求四棱锥的体积; (2)求证:∥平面; (3)求直线和平面所成的角的正弦值.
2013年春运期间,长沙火车站在某大学开设了一个服务窗口。假设每一位顾客办理业务所需时间都是整数分钟,对这1000名顾客办理业务所需时间统计结果如下:
以记录的这1000名顾客办理业务所需时间的频率作为各所需时间发生的概率。 (1)求一位顾客办理业务时间不超过3分钟的概率; (2)估计顾客办理业务所需时间的平均值。
已知直线. (1)判断直线与是否能平行; (2)当时,求a的值.
已知集合,. (1)求; (2)若,求的取值范围。
已知函数. (1)求函数的最小正周期和单调递增区间; (2)将函数的图像上各点的纵坐标保持不变,横坐标缩短到原来的,把所得到的图像再向左平移单位,得到的函数的图像,求函数在区间上的最小值.