湖南大学自主招生选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响。 (1)求该选手被淘汰的概率; (2)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望
在面积为1的△PMN中,tan∠M=,tan∠N=-2,建立适当坐标系,求出以MN为焦点且过P点的椭圆方程.
方程=1表示焦点在y轴上的椭圆,求实数m的取值范围.
已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.
椭圆的中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点B与两个焦点F1、F2组成的三角形的周长是4+2,且∠F1BF2=,求椭圆的方程.
△ABC的两个顶点A、B的坐标分别是(-5,0)、(5,0),边AC、BC所在直线的斜率 之积为-,求顶点C的轨迹.