已知函数 有两个零点.
(Ⅰ)求 的取值范围;
(Ⅱ)设 , 是 的两个零点,证明: .
设圆 的圆心为 ,直线 过点 且与 轴不重合, 交圆 于 , 两点,过 作 的平行线交 于点 .
(Ⅰ)证明 为定值,并写出点 的轨迹方程;
(Ⅱ)设点 的轨迹为曲线 ,直线 交 于 , 两点,过 且与 垂直的直线与圆 交于 , 两点,求四边形 面积的取值范围.
某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记 表示2台机器三年内共需更换的易损零件数, 表示购买2台机器的同时购买的易损零件数.
(Ⅰ)求 的分布列;
(Ⅱ)若要求 ,确定 的最小值;
(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在 与 之中选其一,应选用哪个?
如图,在以 , , , , , 为顶点的五面体中,面 为正方形, , ,且二面角 与二面角 都是 .
(Ⅰ)证明平面 平面 ;
(Ⅱ)求二面角 的余弦值.
的内角 , , 的对边分别为 , , ,已知 .
(Ⅰ)求 ;
(Ⅱ)若 , 的面积为 ,求 的周长.
在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为 .
(1)M为曲线C1上的动点,点P在线段OM上,且满足 ,求点P的轨迹C2的直角坐标方程;
(2)设点A的极坐标为 ,点B在曲线C2上,求△OAB面积的最大值.
设O为坐标原点,动点M在椭圆 上,过M作x轴的垂线,垂足为N,点P满足 .
(1)求点P的轨迹方程;
(2)设点Q在直线 上,且 .证明:过点P且垂直于OQ的直线l过C的左焦点F.
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg |
箱产量≥50kg |
|
旧养殖法 |
||
新养殖法 |
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
|
0.050 |
0.010 |
0.001 |
K |
3.841 |
6.635 |
10.828 |
.
如图,四棱锥 中,侧面PAD为等边三角形且垂直于底面ABCD, , .
(1)证明:直线BC∥平面PAD;
(2)若△PCD面积为 ,求四棱锥 的体积.
已知等差数列 的前n项和为Sn,等比数列 的前n项和为Tn, , , .
(1)若 ,求 的通项公式;
(2)若 ,求S3.
在直角坐标系 中,曲线C1的参数方程为 (t为参数, ).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线 .
(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为 ,其中α0满足 ,若曲线C1与C2的公共点都在C3上,求a.
如图,△OAB是等腰三角形, .以O为圆心, 为半径作圆.
(Ⅰ)证明:直线AB与⊙O相切;
(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明: .