设O为坐标原点,动点M在椭圆 C : x 2 2 + y 2 = 1 上,过M作x轴的垂线,垂足为N,点P满足 NP ⃗ = 2 NM → .
(1)求点P的轨迹方程;
(2)设点Q在直线 x =﹣ 3 上,且 OP ⃗ ⋅ PQ ⃗ = 1 .证明:过点P且垂直于OQ的直线l过C的左焦点F.