如图,四棱锥 P - ABCD 中,侧面PAD为等边三角形且垂直于底面ABCD, AB = BC = 1 2 AD , ∠ BAD = ∠ ABC = 90 ° .
(1)证明:直线BC∥平面PAD;
(2)若△PCD面积为 2 7 ,求四棱锥 P - ABCD 的体积.
(本小题满分10分)已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左,右焦点.(Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程;(Ⅱ)在(I)的条件下,设直线与圆锥曲线交于两点,求弦的长.
(本小题满分10分)如图,AD是⊙O的直径,AB是⊙O的切线,M, N是圆上两点,直线MN交AD的延长线于点C,交⊙O的切线于B,BM=MN=NC=1,求AB的长和⊙O的半径.
(本小题满分12分)A﹑B﹑C是直线上的三点,向量﹑﹑满足:-[y+2]·+ln(x+1)·= ;(Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0, 证明f(x)>;(Ⅲ)当时,x及b都恒成立,求实数m的取值范围。
(本小题满分12分)已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点; (Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G的轨迹方程;(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面积。
因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施.若实施方案一,预计第一年可以使出口额恢复到危机前的1.0倍、0.9倍、0.8倍的概率分别为0.3、0.3、0.4;第二年可以使出口额为第一年的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使出口额恢复到危机前的1.2倍、l.0倍、0.8倍的概率分别为0.2、0.3、0.5;第二年可以使出口额为第一年的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立.令ζ(=1,2)表示方案实施两年后出口额达到危机前的倍数。(Ⅰ)写出、的分布列;(Ⅱ)实施哪种方案,两年后出口额超过危机前出口额的概率更大?(Ⅲ)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为10万元、15万元、20万元,问实施哪种方案的平均利润更大。