甲、乙等五名奥运志愿者被随机地分到A、B、C、D四个不同的岗位服务,每个岗位至少有一名志愿者(1)求甲、乙两人同时参加A岗位服务的概率(2)求甲、乙两人不在同一个岗位服务的概率(3)设随机变量为这5名志愿者中参加A岗位服务的人数,求
(本小题12分)已知命题:函数的图象与轴没有公共点,命题,若命题为真命题,求实数的取值范围
(本小题满分14分) 已知函数R, . (1)求函数的单调区间; (2)若关于的方程为自然对数的底数)只有一个实数根, 求的值.
(本小题满分14分)如图直线l:y=x+b与抛物线C:x2=4y相切于点A. (1)求实数b的值; (2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
(本小题满分14分) 已知数列为等差数列,且,. (1) 求数列的通项公式; (2) 令,求证:数列是等比数列; (3)令,求数列的前项和.
(本小题满分14分) 如图所示,在棱长为2的正方体中,、分别为、的中点. (1)求证://平面; (2)求证:; (3)求三棱锥的体积.