甲、乙等五名奥运志愿者被随机地分到A、B、C、D四个不同的岗位服务,每个岗位至少有一名志愿者(1)求甲、乙两人同时参加A岗位服务的概率(2)求甲、乙两人不在同一个岗位服务的概率(3)设随机变量为这5名志愿者中参加A岗位服务的人数,求
已知向量m=n=(1)若m·n=1,求的值(2)记函数f(x)= m·n,在中,角A,B,C的对边分别是a,b,c,且满足求f(A)的取值范围.
已知命题,,若是的必要而不充分条件,求正实数的取值范围
已知函数,(1)求函数的最小正周期(2)若函数在处取得最大值,求的值.
函数,其中为常数.(1)证明:对任意,的图象恒过定点;(2)当时,判断函数是否存在极值?若存在,求出极值;若不存在,说明理由;(3)若对任意时,恒为定义域上的增函数,求的最大值.
设是等差数列,是各项都为正数的等比数列,且,,(1)求,的通项公式;(2)求数列的前n项和.