二次函数的图象经过三点。(1)求函数的解析式;(2)求函数在区间上的最大值和最小值。
某商场为刺激消费,拟按以下方案进行促销:顾客每消费元便得到抽奖券一张,每张抽奖券的中奖概率为,若中奖,商场返回顾客现金元.某顾客现购买价格为元的台式电脑一台,得到奖券张.(Ⅰ)设该顾客抽奖后中奖的抽奖券张数为,求的分布列;(Ⅱ)设该顾客购买台式电脑的实际支出为(元),用表示,并求的数学期望.
设函数(1)求函数的单调区间;(2)求在[—1,2]上的最小值;(3)当时,用数学归纳法证明:
已知定点和直线,过定点F与直线相切的动圆圆心为点C。(1)求动点C的轨迹方程;(2)过点F在直线l2交轨迹于两点P、Q,交直线l1于点R,求的最小值。
济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人浏览这四个景点的概率分别是0.3,0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。(1)求=0对应的事件的概率;(2)求的分布列及数学期望。
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有个圆盘依其半径大小,大的在下,小的在上套在柱上,现要将套在柱上的盘换到柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子可供使用. 现用表示将个圆盘全部从柱上移到柱上所至少需要移动的次数,回答下列问题: (1)写出 并求出 (2)记 求和(其中表示所有的积的和) (3)证明: