古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有个圆盘依其半径大小,大的在下,小的在上套在柱上,现要将套在柱上的盘换到柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子可供使用. 现用表示将个圆盘全部从柱上移到柱上所至少需要移动的次数,回答下列问题: (1)写出 并求出 (2)记 求和(其中表示所有的积的和) (3)证明:
(本题14分)对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为A和B,即. (1)设,求集合A和B; (2)若,,求实数的取值范围; (3)若,求证:.
(本题13分)已知集合函数的定义域为集合B. (1)若,求实数的值; (2)若,求实数的取值范围.
(本题12分)如图所示,直线⊥轴,从原点开始向右平行移动到处停止,它截△AOB所得左侧图形的面积为S,它与x轴的交点为. (1)求函数的解析式; (2)解不等式.
(本题12分)函数. (1)若,求的值; (2)确定函数在区间上的单调性,并用定义证明.
(本题12分)若集合,集合,且,求实数的取值范围.