已知等差数列 { a n } 的前n项和为Sn,等比数列 { b n } 的前n项和为Tn, a 1 =﹣ 1 , b 1 = 1 , a 2 + b 2 = 2 .
(1)若 a 3 + b 3 = 5 ,求 { b n } 的通项公式;
(2)若 T 3 = 21 ,求S3.
已知向量,. (1)若,求的值; (2)若,,求的值.
已知点,,动点满足. (1)求动点的轨迹的方程; (2)在直线:上取一点,过点作轨迹的两条切线,切点分别为.问:是否存在点,使得直线//?若存在,求出点的坐标;若不存在,请说明理由.
某品牌汽车4店经销三种排量的汽车,其中三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能. (1)求该单位购买的3辆汽车均为种排量汽车的概率; (2)记该单位购买的3辆汽车的排量种数为,求的分布列及数学期望.
已知均为正数,证明:.
在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.由直线上的点向圆引切线,求切线长的最小值.