某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.(Ⅰ)求直方图中的值;(Ⅱ)如果上学所需时间不小于1小时的学生中可以申请在学校住宿,请估计学校名新生中有多少名学生可以住宿.
已知函数是常数且)在区间上有(1)求的值;(2)若当时,求的取值范围;
已知集合(1)能否相等?若能,求出实数的值,若不能,试说明理由?(2)若命题命题且是的充分不必要条件,求实数的取值范围;
已知且(1)求的值;(2)求的值;
已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.①求a的值;②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,,求数列{an}的通项公式an和sn.③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.
已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x).①求f(x)在x=3处的切线斜率;②若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;③若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围.