(本小题满分12分)已知平面向量,,函数.(1)写出函数的单调递减区间;(2)设,求直线与在闭区间上的图像的所有交点坐标.
已知数列{an}为等差数列,若<-1,且它们的前n项和Sn有最大值,求使得Sn<0的n的最小值.
已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.(1)求a及k的值;(2)设数列{bn}的通项bn=,证明数列{bn}是等差数列,并求其前n项和Tn.
已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22.(1)求Sn;(2)这个数列的前多少项的和最大,并求出这个最大值.
已知等差数列{an}的前n项和为Sn,n∈N*,且满足a2+a4=14,S7=70.(1)求数列{an}的通项公式;(2)若bn=,则数列{bn}的最小项是第几项,并求该项的值.
已知数列{an}的前n项和为Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1=.(1)求证:是等差数列;(2)求an的表达式.