如图,在以 A , B , C , D , E , F 为顶点的五面体中,面 ABEF 为正方形, AF = 2 FD , ∠ AFD = 90 ° ,且二面角 D - AF - E 与二面角 C - BE - F 都是 60 ° .
(Ⅰ)证明平面 ABEF ⊥ 平面 EFDC ;
(Ⅱ)求二面角 E - BC - A 的余弦值.
当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2.(1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么?
已知某工厂生产件产品的成本为(元),问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
已知函数在处有极小值,试求的值,并求出的单调区间.
已知,证明不等式.
在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭?持续多长时间?