已知函数().
(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;
(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.
(本小题满分16分)对于函数,如果存在实数使得,那么称为的生成函数.
(1)下面给出两组函数,是否分别为的生成函数?并说明理由;
第一组:;
第二组:;
(2)设,生成函数.若不等式在上有解,求实数的取值范围.
(本小题满分14分)若在定义域内存在实数,使得成立,则称函数有“飘移点”.
(1)函数是否有“飘移点”?请说明理由;
(2)证明函数在上有“飘移点”;
(3)若函数在上有“飘移点”,求实数的取值范围.
近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间.
(1)已知是上的正函数,求的等域区间;
(2)试探究是否存在实数,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.
(本小题满分14分)已知函数,,设曲线在点处的切线方程为. 如果对任意的,均有:
①当时,;
②当时,;
③当时,,
则称为函数的一个“ʃ-点”.
(1)判断是否是下列函数的“ʃ-点”:
①; ②.(只需写出结论)
(2)设函数.
(ⅰ)若,证明:是函数的一个“ʃ-点”;
(ⅱ)若函数存在“ʃ-点”,直接写出的取值范围.
(本小题满分12分)已知定义域为的函数同时满足以下三个条件:
①对任意的,总有;
②;
③若且,则有成立,则称为“友谊函数”.
(Ⅰ)若已知为“友谊函数”,求的值;
(Ⅱ)函数在区间上是否为“友谊函数”?并给出理由;
(Ⅲ)已知为“友谊函数”,且 ,求证:.
已知函数的定义域为,若在上为增函数,则称
为“比增函数”;
(Ⅰ)若函数是“比增函数”,求实数的取值范围;
(Ⅱ)已知,为“比增函数”,且的部分函数值由下表给出,
求证:.
(本小题满分14分)对于定义域为的函数,若同时满足下列条件:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把()叫闭函数,且条件②中的区间为的一个“好区间”.
(1)求闭函数的“好区间”;
(2)若为闭函数的“好区间”,求、的值;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
设是正整数,为正有理数.
(1)求函数的最小值;
(2)证明:;
(3)设,记为不小于的最小整数,例如.令的值.
(参考数据:.
(小题满分14分)已知定义域为R的函数是奇函数.
(1)求的值;
(2)若对任意的,不等式恒成立,求的取值范围.
(本小题满分12分)
若函数满足下列两个性质:
①在其定义域上是单调增函数或单调减函数;
②在的定义域内存在某个区间使得在上的值域是.则我们称为“内含函数”.
(1)判断函数是否为“内含函数”?若是,求出a、b,若不是,说明理由;
(2)若函数是“内含函数”,求实数t的取值范围.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知函数.
(1) 试说明函数的图像是由函数的图像经过怎样的变换得到的;
(2) (理科)若函数,试判断函数的奇偶性,并用反证法证明函数的最小正周期是;
(3) 求函数的单调区间和值域.