已知是定义在上的奇函数,且,若时,有成立.
(1)判断在上的单调性,并证明;
(2)解不等式:;
(3)若当时,对所有的恒成立,求实数的取值范围.
已知函数,(1) 若的解集是,求实数的值;(2) 若且恒成立,求实数的取值范围.
若定义在上的函数同时满足:①;②;③若,且,则成立.则称函数为“梦函数”.
(1)试验证在区间上是否为“梦函数”;
(2)若函数为“梦函数”,求的最值.
设
,已知函数
.
(Ⅰ)当
时,讨论函数
的单调性;
(Ⅱ)当
时,称
为
关于
的加权平均数.
(1)判断
是否成等比数列,并证明
;
(2)
的几何平均数记为
.称
为
的调和平均数,记为
.若
,求
的取值范围.
(文)已知函数在区间上最大值为1,最小值为2.(1)求的解析式;(2)若函数在区间上为减函数,求实数m的取值范围.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b﹣1(a≠0).
(1)当a=1,b=﹣2时,求f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q.
(1)将tanq表示为x的函数;
(2)求点D的位置,使q取得最大值.
已知函数f(x)=ax+ (x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
(本小题满分10分) 已知(),是关于的次多项式;
(1)若恒成立,求和的值;并写出一个满足条件的的表达式,无需证明.
(2)求证:对于任意给定的正整数,都存在与无关的常数,,,…,,
使得.
已知函数,常数.
(1)讨论函数的奇偶性,并说明理由;
(2)若函数在上为增函数,求的取值范围.