设a>0,b>0,已知函数f(x)=ax+bx+1. (Ⅰ)当a≠b时,讨论函数f(x)的单调性; (Ⅱ)当x>0时,称f(x)为a,b关于x的加权平均数. (1)判断f(1),f(ba),f(ba)是否成等比数列,并证明f(ba)≤f(ba); (2)a,b的几何平均数记为G.称2aba+b为a,b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.
已知函数f(x)的定义域是{x|x≠0},对定义域内的任意x1,x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1. (1)证明:f(x)是偶函数; (2)证明:f(x)在(0,+∞)上是增函数; (3)解不等式f(2x2-1)<2.
已知函数,函数. (1)求函数与的解析式,并求出的定义域; (2)设,试求函数的最值.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中是仪器的月产量). (1)将利润表示为月产量的函数; (2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)
已知函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1) 的定义域为B. (1)求A; (2)若BA, 求实数a的取值范围.
计算: (1) (2)已知,计算:.