已知 当a¹b时 求证:.
(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.(1)求椭圆的方程;(2)求的取值范围.
(本小题满分12分)如图,在斜三棱柱中,是的中点,⊥平面,,. (1)求证:;(2)求二面角的余弦值.
(本小题满分12分)某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,,(单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(2)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.
(本小题满分12分)已知公差不为0的等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)设数列的最小项是第几项,并求出该项的值.
已知为为双曲线的两个焦点,焦距,过左焦点垂直于轴的直线,与双曲线相交于两点,且为等边三角形.(1)求双曲线的方程;(2)设为直线上任意一点,过右焦点作的垂线交双曲线与两点,求证:直线平分线段(其中为坐标原点);(3)是否存在过右焦点的直线,它与双曲线的两条渐近线分别相交于两点,且使得的面积为?若存在,求出直线的方程;若不存在,请说明理由.