某工艺厂开发一种新工艺品,头两天试制中,该厂要求每位师傅每天制作10件,该厂质检部每天从每位师傅制作的10件产品中随机抽取4件进行检查,若发现有次品,则当天该师傅的产品不能通过.已知李师傅第一天、第二天制作的工艺品中分别有2件、1件次品.(1)求两天中李师傅的产品全部通过检查的概率;(2)若厂内对师傅们制作的工艺品采用记分制,两天都不通过检查的得0分,两天中只通过一天检查的得1分,两天都通过检查的得2分,求李师傅在这两天内得分的数学期望.
(本小题满分12分)设函数. (1)若函数在处有极值,求函数的最大值; (2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; ②证明:不等式
(本小题满分12分)已知椭圆的左,右顶点分别为,圆上有一动点,点在轴的上方,,直线交椭圆于点,连接. (1)若,求△的面积; (2)设直线的斜率存在且分别为,若,求的取值范围.
(本小题满分12分)如图,在四棱锥中,平面平面,,在锐角中,并且,. (1)点是上的一点,证明:平面平面; (2)若与平面成角,当面平面时,求点到平面的距离.
(本小题满分12分)我国新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,由此得到样本的空气质量指数频率分布直方图,如图. (1)求的值; (2)根据样本数据,试估计这一年度的空气质量指数的平均值; (3)如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.
(本小题满分12分)“德是”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为,救援中心测得飞船位于其南偏西方向,仰角为.救援中心测得着陆点位于其正东方向. (1)求两救援中心间的距离; (2)救援中心与着陆点间的距离.