如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.
(本小题满分14分)某中学在高二开设了A,B,C,D共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生。 (Ⅰ)求这3名学生选择的选修课互不相同的概率; (Ⅱ)求恰有2门选修课没有被这3名学生选择的概率; (Ⅲ)求A选修课被这3名学生选择的人数的数学期望.
如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABC是边长为2的菱形,∠BAD=60°,M为PC的中点. (Ⅰ)求证:PA//平面BDM; (Ⅱ)在AD上确定一点,使得面面,并加以证明; (Ⅲ)求直线AC与平面ADM所成角的正弦值.
(本小题满分13分)已知函数, (Ⅰ)求函数的最小正周期; (Ⅱ)记的内角A,B,C的对边长分别为,若,求的值。
(本小题满分14分)对于函数,如果存在实数使得,那么称为的生成函数. (Ⅰ)下面给出两组函数,是否分别为的生成函数?并说明理由; 第一组:; 第二组:; (Ⅱ)设,生成函数.若不等式在上有解,求实数的取值范围; (Ⅲ)设,取,生成函数使恒成立,求的取值范围.
(本小题满分14分)已知椭圆的两个焦点分别为、,短轴的两个端点分别为. (Ⅰ)若为等边三角形,求椭圆的方程; (Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.