(已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当x=2时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-C的余弦值.
过点P(-2,-3)作圆C:(x-4)2+(y-2)2=9的两条切线,切点分别为A、B.求: (1)经过圆心C,切点A、B这三点的圆的方程; (2)直线AB的方程; (3)线段AB的长.
圆心在直线5x-3y-8=0上的圆与两坐标轴相切,求此圆的方程.
求过直线2x+y+4=0和圆x2+y2+2x-4y+1=0的交点,且满足下列条件之一的圆的方程. (1)过原点; (2)有最小面积.
有一圆C与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.
给定空间直角坐标系,在x轴上找一点P,使它与点P0(4,1,2)的距离为,求P点的坐标.