已知向量,若.(Ⅰ)求函数的单调递增区间;(Ⅱ)已知的三内角A、B、C的对边分别为,且,(A为锐角),,求A、的值.
(本小题满分12分)
如图,ABCD是边长为的正方形,ABEF是矩形,且二面角CABF是直二面角,,G是EF的中点, (Ⅰ)求证平面⊥平面;(Ⅱ)求GB与平面AGC所成角的正弦值.(Ⅲ)求二面角B—AC—G的大小.
(本小题满分12分)经统计,某大医院一个结算窗口每天排队结算的人数及相应的概率如下:
(1)每天不超过20人排队结算的概率是多少?(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,医院就需要增加结算窗口,请问该医院是否需要增加结算窗口?
(本小题满分12分)已知a、b、c分别是△ABC三个内角A、B、C的对边.(1)若△ABC面积为,c=2,A=60°,求a,b的值;(2)若acosA=bcosB,试判断△ABC的形状,证明你的结论.
(本小题满分12分) (理)已知Sn是正数数列{an}的前n项和,S12,S22、……、Sn2 ……,是以3为首项,以1为公差的等差数列;数列{bn}为无穷等比数列,其前四项之和为120,第二项与第四项之和为90. (I)求an、bn;(II)从数列{}中能否挑出唯一的无穷等比数列,使它的各项和等于.若能的话,请写出这个数列的第一项和公比?若不能的话,请说明理由.
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角的余弦值;(Ⅲ)求面AMC与面BMC所成二面角的余弦值。