设数列满足且(Ⅰ)求的值,使得数列为等比数列;(Ⅱ)求数列和的通项公式;(Ⅲ)令数列和的前项和分别为和,求极限的值.
在底面边长为2,高为1的正四梭柱ABCD=A1B1C1D1中,E,F分别为BC,C1D1的中点. (1)求异面直线A1E,CF所成的角; (2)求平面A1EF与平面ADD1A1所成锐二面角的余弦值.
解不等式.
在极坐标系中,求圆上的点到直线的距离的最大值.
在平面直角坐标系中,直线在矩阵对应的变换作用下得到直线,求实数、的值.
如图,、是圆的半径,且,是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.